
RNA-Seq Differential Gene Expression analysis (Galaxy Server)

GBIO0002

Archana Bhardwaj University of Liege

Typical RNA-Seq Experiment

Nat Rev Genet. Author manuscript; available in PMC 2010 October 4.

Published in final edited form as:

Nat Rev Genet. 2009 January; 10(1): 57-63. doi:10.1038/nrg2484.

RNA-Seq: a revolutionary tool for transcriptomics

Zhong Wang, Mark Gerstein, and Michael Snyder

Zhong Wang and Michael Snyder are at the Department of Molecular, Cellular and Developmental Biology, and Mark Gerstein is at the Department of Molecular, Biophysics and Biochemistry, Yale University, 219 Prospect Street, New Haven, Connecticut 06520, USA.

Abstract

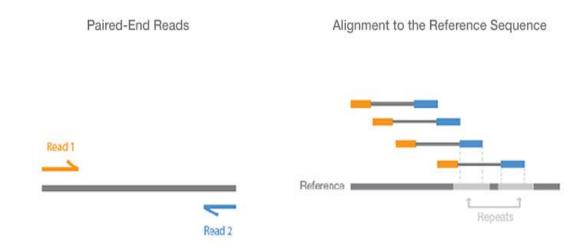
RNA-Seq is a recently developed approach to transcriptome profiling that uses deep-sequencing technologies. Studies using this method have already altered our view of the extent and complexity of eukaryotic transcriptomes. RNA-Seq also provides a far more precise measurement of levels of transcripts and their isoforms than other methods. This article describes the RNA-Seq approach, the challenges associated with its application, and the advances made so far in characterizing several eukaryote transcriptomes.

The transcriptome is the complete set of transcripts in a cell, and their quantity, for a specific developmental stage or physiological condition. Understanding the transcriptome is essential for interpreting the functional elements of the genome and revealing the molecular constituents of cells and tissues, and also for understanding development and disease. The key aims of transcriptomics are: to catalogue all species of transcript, including mRNAs, non-coding RNAs and small RNAs; to determine the transcriptional structure of genes, in terms of their start sites, 5' and 3' ends, splicing patterns and other post-transcriptional modifications; and to quantify the changing expression levels of each transcript during development and under different conditions.

Mapping and quantifying mammalian transcriptomes by RNA-Seq

Ali Mortazavi^{1,2}, Brian A Williams^{1,2}, Kenneth McCue¹, Lorian Schaeffer¹ & Barbara Wold¹

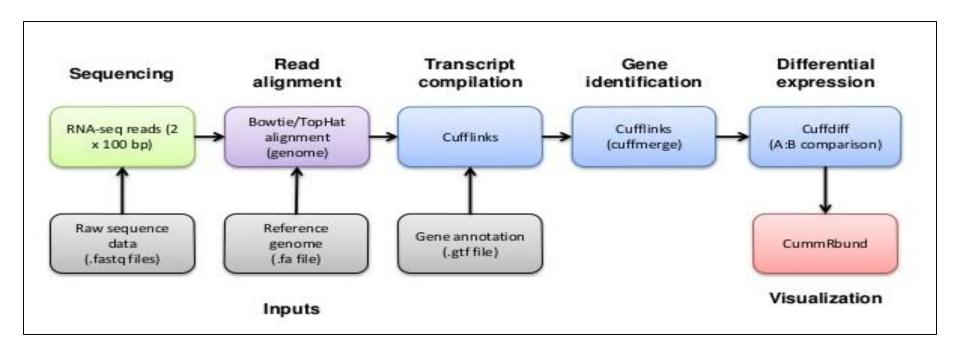
We have mapped and quantified mouse transcriptomes by deeply sequencing them and recording how frequently each gene is represented in the sequence sample (RNA-Seq). This provides a digital measure of the presence and prevalence of transcripts from known and previously unknown genes. We report reference measurements composed of 41-52 million mapped 25-base-pair reads for poly(A)-selected RNA from adult mouse brain, liver and skeletal muscle tissues. We used RNA standards to quantify transcript prevalence and to test the linear range of transcript detection, which spanned five orders of magnitude. Although >90% of uniquely mapped reads fell within known exons, the remaining data suggest new and revised gene models, including changed or additional promoters, exons and 3' untranscribed regions, as well as new candidate microRNA precursors. RNA splice events, which are not readily measured by standard gene expression microarray or serial analysis of gene expression methods, were detected directly by mapping splice-crossing sequence reads. We observed 1.45 × 105 distinct splices, and alternative splices were prominent, with 3,500 different genes expressing one or more alternate internal splices.


The mRNA population specifies a cell's identity and helps to govern its present and future activities. This has made transcriptome approaches to large-scale RNA analysis are serial analysis of gene expression (SAGE)4,5 and related methods such as massively parallel signature sequencing (MPSS)6, which use DNA sequencing of previously cloned tags 17-25 base pairs (bp) from terminal 3' (or 5') sequence tags. These sequence tags are then identified by informatic mapping to mRNA reference databases or, for longer tag lengths, to the source genome. A strength of SAGE and SAGElike methods is that they produce digital counts of transcript abundance, in contrast to the analog-style signals obtained from fluorescent dye-based microarrays. However, SAGE-family assays provide no information about splice isoforms or new gene discovery, and fully comprehensive measurements of lower-abundanceclass RNAs have not been achieved owing to cost and technology constraints. Expressed sequence tag (EST) sequencing of cloned cDNAs has long been the core method for reference transcript discovery⁷⁻⁹. It has both qualitative and quantitative limitations, imposed partly by historic sequencing capacity and cost issues, and more crucially by bacterial cloning constraints that affect which sequences are represented and how sequence-complete each clone is. Recently, dense whole-genome tiling microarrays have been developed and applied to transcriptomes for measuring expression and for transcript discovery10-14. In contrast to expression arrays, these tiling arrays can discover new genes and exons, but they require large amounts of input RNA and have

What Can You Actually Do With RNA-Seq?

- ✓ RNA-seq is a powerful and versatile tool published widely over the last few years.
- ✓RNA-seq used to investigate complex diseases and find new genes for functional analysis.
- ✓RNA-seq used in one of the study to look at the conservation of RNA Polymerase III binding in mammals.
- ✓RNA-seq and microarray-based capture used to identify and characterize rare transcripts, which are normally undetectable.

Paired end sequence


The term 'paired ends' refers to the two ends of the same DNA molecule. So you can sequence one end, then turn it around and sequence the other end. The two sequences you get are 'paired end reads'.

Paired-end RNA sequencing (RNA-Seq) enables discovery applications such as detecting gene fusions in cancer and characterizing novel splice isoforms.

Protocol for RNA Seq Data Analysis

- RNA Seq analysis is multi step procedure.
- ✓ Different tools are required at each step.

✓ We will use one of the galaxy server to perform RNASeq

Data analysis

Galaxy Community

se - Community

Education +

Deploy & Develop +

Support -

Search Galaxy

8

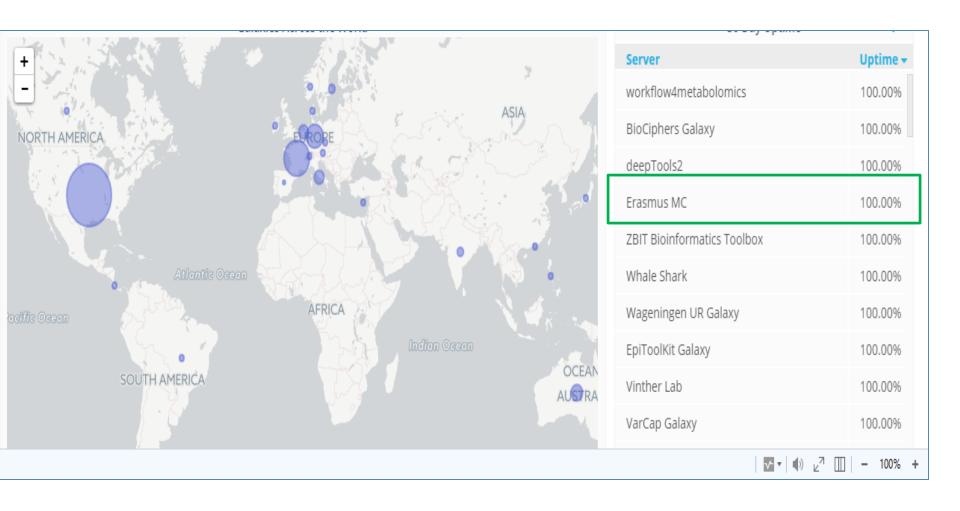
Publicly Accessible Galaxy Servers

Public Galaxy Servers and *still* counting

The Galaxy Project's public server (usegalaxy.org) can meet many needs, but it is not suitable for everything (see Choices for why). Fortunately the Galaxy Community is helping out by installing Galaxy at their institutions and then making those installations either publicly available or open to their organizations or community. This page lists publicly accessible Galaxy servers. To be included here a server must be accessible to any academic researcher anywhere in the world. Some servers may require logins and enforce quotas.

If you maintain a public instance of Galaxy it is recommended to sign up for the public servers mailing list to receive security fixes with priority.

To add your public Galaxy server to this list describe the server here and we'll post it this directory.


Galaxy Services

There are also a number of Galaxy services that make Galaxy available to research communities, sometimes restricted on a geographical or domain basis. See the Galaxy services list.

Public ToolSheds

In addition to the the main Galaxy and Test ToolSheds, several groups have made their tools available through publicly accessibly ToolSheds.

Galaxies across the World

GALAXY Server: Why to Use

- √The Galaxy Project's public server (<u>usegalaxy.org</u>) can meet many needs
- √ General Purpose / Genomics Galaxy Servers
- **✓ Domain Specific Galaxy Servers**
- √ Tool Publishing Galaxy Servers

Genomics Galaxy Server

These servers implement a broad range of tools and aren't specific to any part of the tree of life, or to any specific type of analysis. These are servers you can use when want to do general genomic analysis.

Name	Links	Summary
ABIMS	ABiMS Galaxy Request an account	General purpose genomics analysis, featuring many standard tools plus many additional tools. Howerver, we are specialized in RNASeq with reference and RNASeq denovo
Biomina	Biomina Galaxy	A general purpose Galaxy instance that includes most standard tools for DNA/RNA sequencing, plus extra tools for panel resequencing, variant annotation and some tools for Illumina SNParray analysis.
CBiB Galaxy	CBiB Galaxy	A general purpose Galaxy instance that includes EMBOSS (a software analysis package for molecular biology) and fibronectin (diversity analysis of synthetic libraries of a Fibronectin domain).
DBCLS Galaxy	DBCLS Galaxy	Adds text mining tools, DBCLS DBSearch Tools, semantic web tools
Erasmus MC	Erasmus MC Bioinformatics Galaxy Server	General purpose genomics analysis, featuring many standard tools plus many additional tools.
GalaxEast	GalaxEast Request an account	Integrative 'omics data analysis
Galaxy Main	Main	The Galaxy Project free public server; biomedical research
Galaxy Test	Galaxy Test	Beta version of Galaxy Main
Galaxy@GenOuest	Galaxy@GenOuest Request a GenOuest account	A general purpose Galaxy server Includes tools developped by Dyliss and GenScale bioinformatics research teams in Rennes, France.
Galaxy@Pasteur	Galaxy@Pasteur	General purpose genomics analysis server.
Galaxy@PRABI	Galaxy@PRABI PRABI Galaxy Tool Shed	Includes bioinformatics tools developed by the research teams working in the perimeter of the PRABI core facility, including kissplice/kissDE, TETools, SEX-DETector, and priam.
GigaGalaxy	GigaGalaxy	Standard Galaxy tools set plus SOAPdenovo and SOAPsnp for de novo assembly and SNP calling.
GVL MEL	Galaxy Melbourne	General purpose Galaxy based on the Genomics Virtual Lab platform.
GVL QLD	Genomics Virtual Lab GVL- QLD	General purpose Galaxy based on the Genomics Virtual Lab platform.
GVL Tutorial	Genomics Virtual Lab	Small Galaxy for Training purposes. Loaded with Histories and Tools for Next Gen Sequencing tutorials.

Domain specific Galaxy Server

Domain servers specialize in either a particular branch of the tree of life or in particular types of analysis. However, within their specializations, domain servers offer a wide variety of tools.

Name	Links	Summary
ballaxy	ballaxy Galaxy server ballaxy using Docker	Hosts the BALL (Biochemical Algorithms Library) Project tools, i.e. computer aided drug design and molecular modelling based on protein and ligand structure data.
BIPAA (BioInformatics Platform for Agroecosystem Arthropods)	BIPAA Galaxy Server BIPAA home page	Insect genomics (aphids, parasitoïd wasps, lepidopterans)
Center for Phage Technology (CPT)	Center for Phage Technology (CPT) Galaxy Server CPT home page	Phage biology and automated annotation.
Cistrome Analysis Pipeline	Cistrome Analysis Pipeline	ChIP-chip/seq and gene expression data
CoSSci	CoSSci Complex Social Science Gateway	Tools for solving Galton's problem in Comparative Research and complex network problems in Social Science.
Dintor	Dintor: Data Integrator Tool Suite	GWA and NGS tools and modules for functional annotation of genes and gene products
Galaxy Integrated Omics (GIO)	GIO Server	Proteomics Informed by Transcriptomics (PIT) methodology, and selection of surrogate peptides for targeted proteomics.
Galaxy PGTB (Virtual Biodiversity Lab)	PGTB Galaxy - Virtual Biodiversity Lab Plateforme Genome Transcriptome de Bordeaux	This is a standard Galaxy instance implemented with specific tools for Biodiversity (Biodiversity Virtual Lab) and NGS (Ion Torrent from the PGTB facility) analysis.
Galaxy-CEFAP	Galaxy-CEFAP	Galaxy-CEFAP offers a set of tools to perform RNA-Seq and miRNA analysis.
Galaxy-P	Use Galaxy-P	Galaxy-P is a multiple 'omics' data analysis platform with particular emphasis on mass spectrometry based proteomics. Galaxy-P is developed at the University of Minnesota, deployed at the Minnesota Supercomputing Institute.
Genomic Hyperbrowser	Genomic Hyperbrowser	statistical methodology and computing power to handle a variety of biological inquires on genomic datasets
GrAPPA	Graph Algorithms Pipeline	GrAPPA is a web-based interface constructed on the Galaxy framework for graph theoretical tools. It contains novel

Galaxy Services: Example

- ✓ Geography Based
- ✓ Domain Based

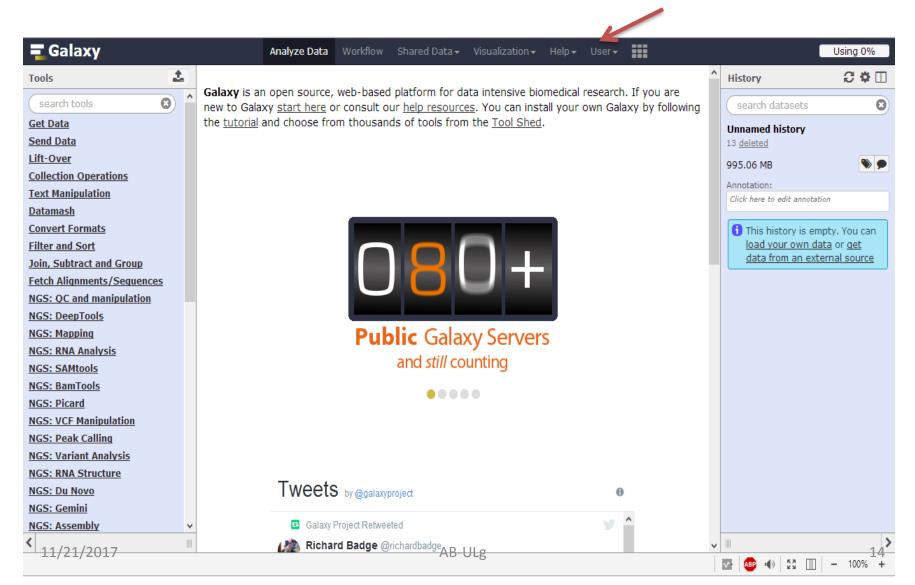
Australia: Genomics Virtual Lab (GVL)

Poland: PL-Grid

United Kingdom: CLIMB

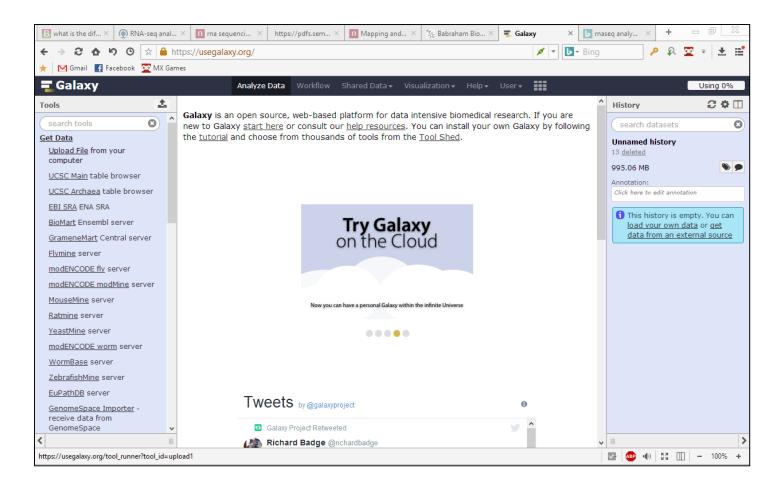
Canada: GenAP

Norway: NeLS


Cancer: Cancer

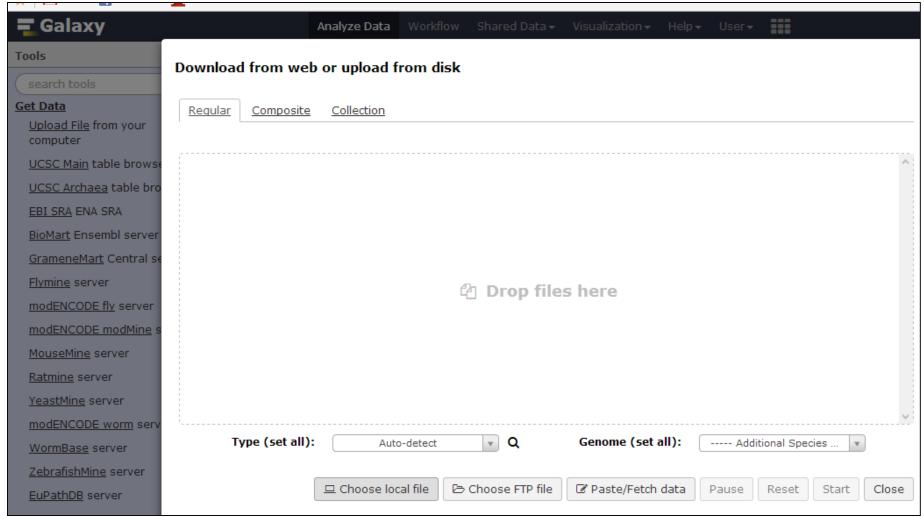
Computer

Galaxy Main Tool Shed

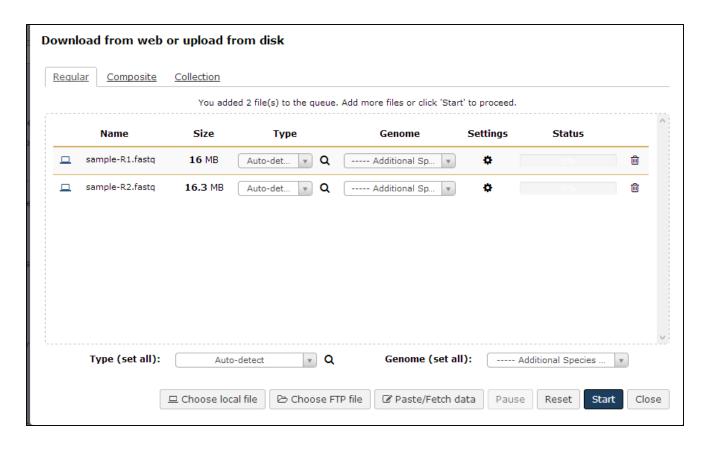

Let Us Use Public GALAXY Server

Go to https://usegalaxy.org/ and create login

GALAXY Server: Upload Data (I)


✓ Click on Get Data and select Upload File from your computer. Download samples files from course website.

GALAXY Server: Upload Data (II)


New Window will appear. Now, Click option "Choose local

file"

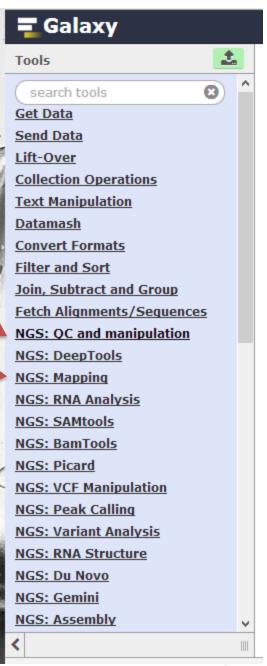
GALAXY Server: Upload Data (III)

✓ Now, Click option "Start". It will upload file to server.

✓ Now wait for 10-20 seconds.

17

✓ Files will be uploaded successfully and appears with green colour .


Galaxy is an open source, web-based platform for data intensive biomedical research. If you are new to Galaxy <u>start here</u> or consult our <u>help resources</u>. You can install your own Galaxy by following the tutorial and choose from thousands of tools from the Tool Shed.

✓ Galaxy consist of collection of Multiple Tools . Today's session, We will use

- √ NGS: QC and manipulation
- **✓ NGS Mapping**
- √ NGS:RNA analysis
- **✓ SAMtools**

Protocol for RNA Seq Data Analysis

1.Pre-processing

2. Quality Filtration

3. Mapping or assembly

4. Expression analysis

Quality Assessment

✓ It is important to check the quality of your sequenced reads

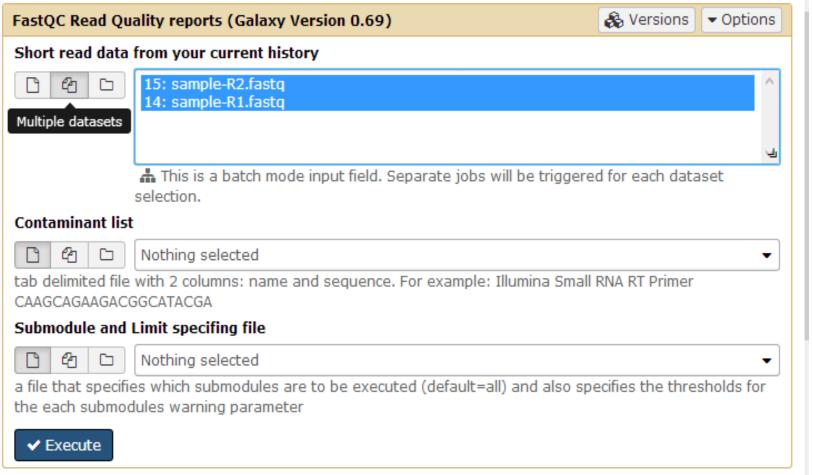
✓ FASTQC: free program that reports quality profile of reads

Quality Assessment

- ✓ Modern high throughput sequencers can generate hundreds of millions of sequences in a single run.
- ✓ Before analysing this sequence to draw biological conclusions you should always perform some simple quality control checks to ensure that
 - (I) the raw data looks good and
 - (II) there are no problems or biases in your data

which may affect how you can usefully use it.

FASTQC tool


✓ Providing a quick overview to tell you in which areas there may be problems

√ Summary graphs and tables to quickly assess your data



- ✓ Double click on NGS: QC and manipulation
- ✓ Select application Fastqc in Galaxy

✓ Select Multiple Dataset to run multiple files and press "Execute"

- √ You will get two types of output files:
- (I) Raw data It consist of text description
- (II) Web page It consist of detail graphical representation of your fastq data.
- ✓ Click on "eye" symbol to view output files.

The left hand side of the main interactive display or the top of the HTML report shows a summary of the modules as normal (green tick), slightly abnormal (orange triangle) or very unusual (red cross).

Basic Sample Statistics

Measure

Value

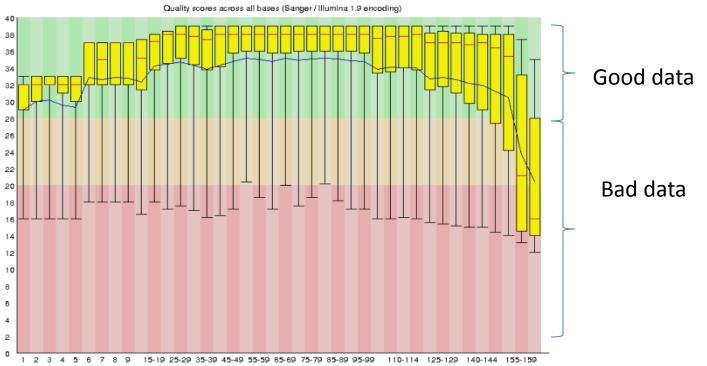
Filename sample-R2_fastq

File type Conventional base calls

Encoding Sanger / Illumina 1.9

Total Sequences 43435

Sequences flagged as poor quality 0


Sequence length 154-160

%GC 47

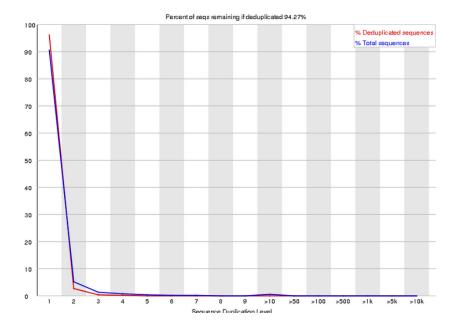
Per Base Sequence Quality

This view shows an overview of the range of quality values across all bases at each position in the FastQ file.

Per base sequence quality

✓ We must consider threshold of Quality: Q30 or above. This graph indicate we need to perform filtration on our data

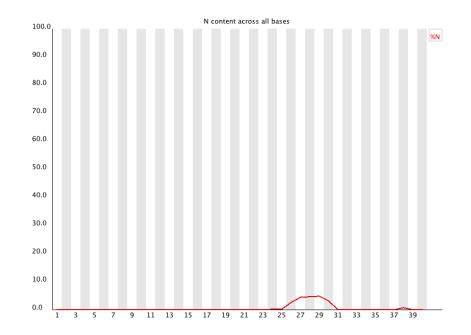
AB-ULg


✓ By looking at figure, we can say that there is problem in bases in position 140-150. It can be fixed during quality filtration step.

Duplicate Sequences

✓A low level of duplication may indicate a very high level of coverage of the target sequence

✓ A high level of duplication is more likely to indicate some kind of enrichment bias (eg PCR over)


amplification).

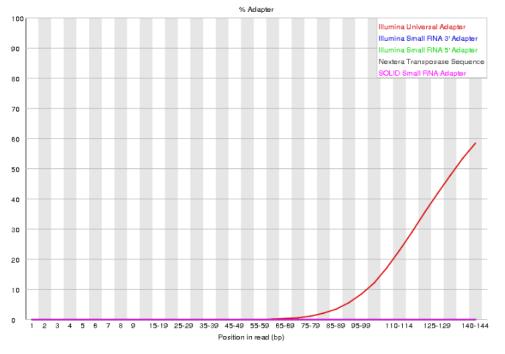
✓ High duplication could affect the mapping efficiency and bias your interpretation.

Per Base N Content

✓ If a sequencer is unable to make a base call with sufficient confidence then it will normally substitute an N rather than a conventional base] call.

√This module plots out the percentage of base calls at each position for which an N was called.

Adapter: Trimming


Sequence Start here

- Universal adapter
- DNA Fragment of Interest
- Index Adapter
- 6 Base index region

Adapter Content

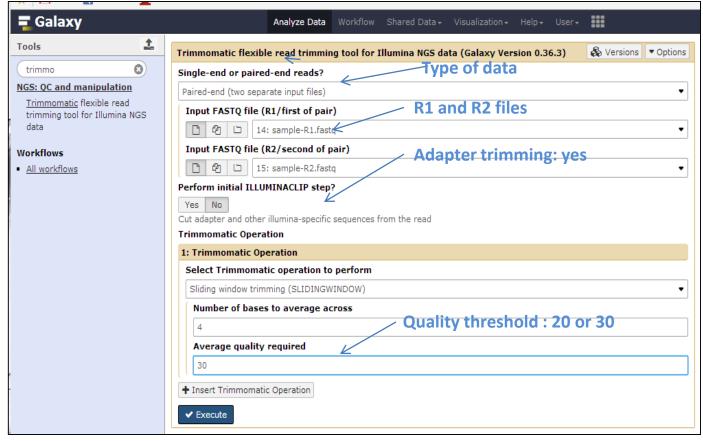
✓ If we know the adapter sequence, we can trim it using Trimmomatic tool.

✓ To get the adapter sequence information, one can contact person who performed the sequencing and can get full detail of "Adapter sequences".

Protocol for RNA Seq Data Analysis

1.Pre-processing

2.Quality Filtration


3. Mapping or assembly

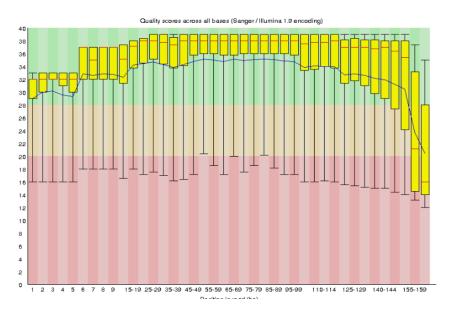
4. Expression analysis

Quality Filtration

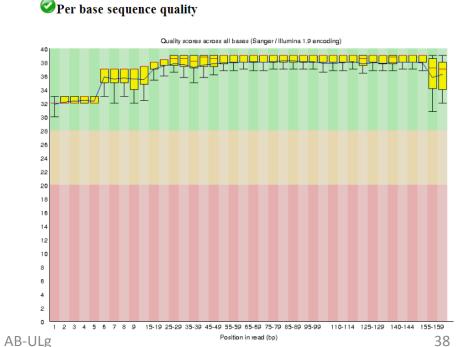
√ Goals: To improve the quality of Data

Trimmomatic:

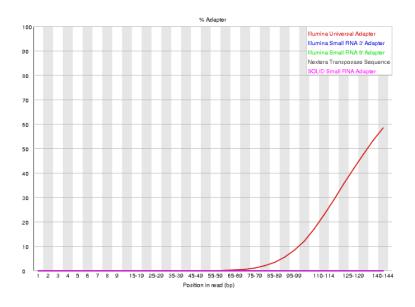
Quality Filtration


✓ Trimmomatic will produce four output files.

- √ For next analysis, we will consider only R1 paired and R2 paired data While unpaired reads will be discarded.
- √ Rerun the Fastqc on paired end R1 and R2 paired end
 files and check statistical output.

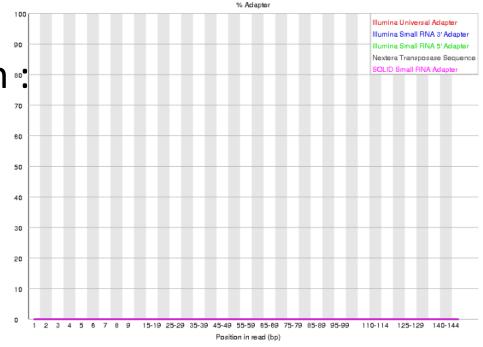

Let us Do Comparison of dataset Before and After Quality filtration

OPER Per base sequence quality



Before Quality filtration: **Bad Data**

After Quality filtration : Good Data


Adapter Content

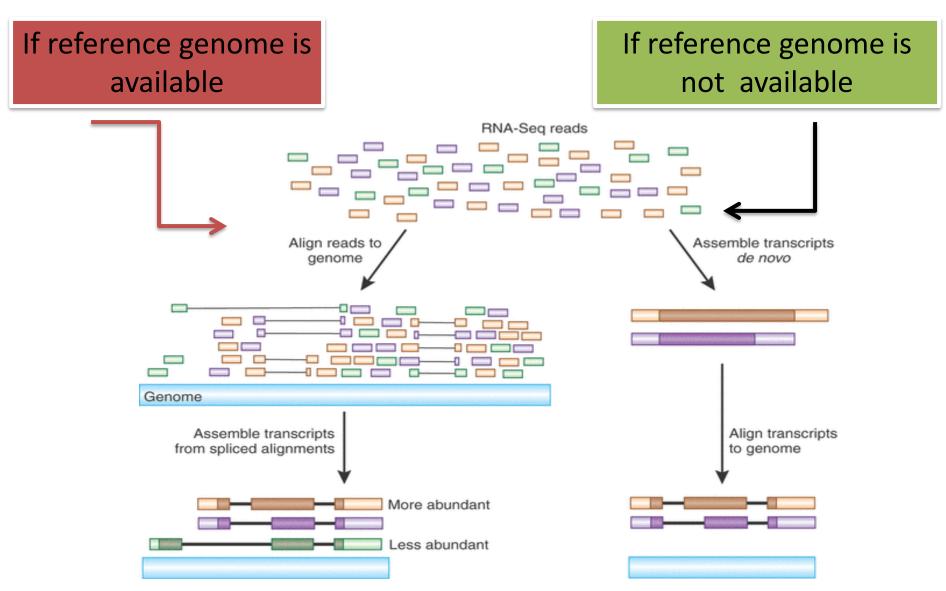
Before Quality filtration : **Adapter contamination**

Adapter Content

Before Quality filtration ::
No Adapter
contamination

Questions?

Protocol for RNA Seq Data Analysis


1.Pre-processing

2.Quality Filtration

3. Mapping or assembly

4. Expression analysis

How to decide: Mapping or assembly?

Mapping tool: Bowtie

✓ Bowtie is an ultrafast and memory-efficient tool for aligning sequencing reads to long reference sequences.

✓It is particularly good at aligning reads of about 50 up to 100s or 1,000s of characters to relatively long (e.g. mammalian) genomes.

✓ Bowtie supports gapped, local, and paired-end alignment modes.

Bowtie: End to End Alignment

The following is an "end-to-end" alignment because it involves all the characters in the read. Such an alignment can be produced by Bowtie 2 in either end-to-end mode or in local mode.

Read: GACTGGGCGATCTCGACTTCG

Reference: GACTGCGATCTCGACATCG

Alignment:

Read: GACTGGGCGATCTCGACTTCG

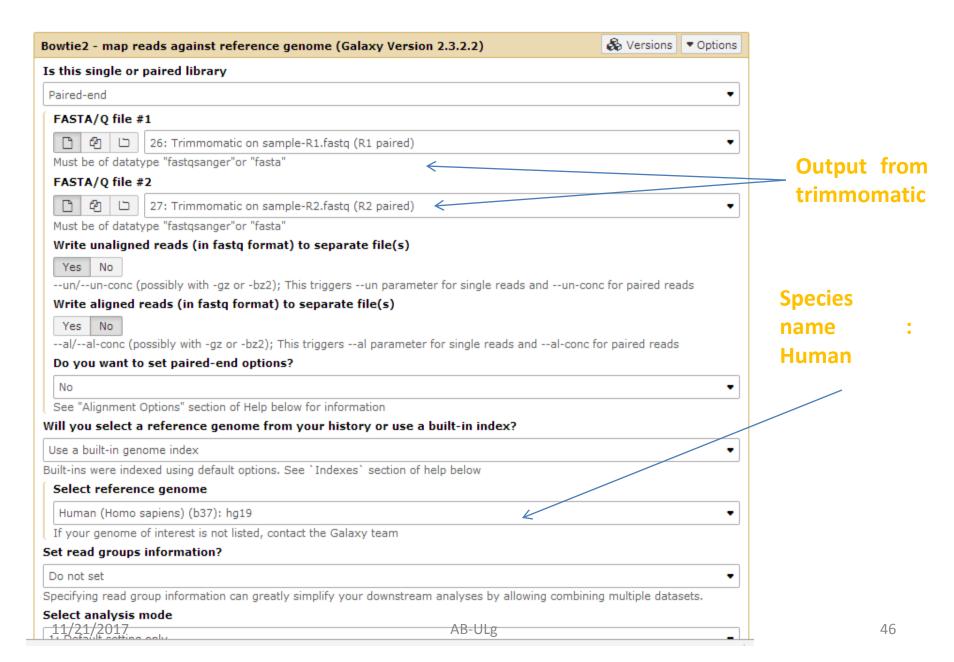
Reference: GACTG--CGATCTCGACATCG

Bowtie: Local Alignment

The following is a "local" alignment because some of the characters at the ends of the read do not participate. In this case, 4 characters are omitted (or "soft trimmed" or "soft clipped") from the beginning and 3 characters are omitted from the end. This sort of alignment can be produced by Bowtie 2 only in local mode.

Read: ACGGTTGCGTTAATCCGCCACG

Reference: TAACTTGCGTTAAATCCGCCTGG


Alignment:

Read: ACGGTTGCGTTAA-TCCGCCACG

Reference: TAACTTGCGTTAAATCCGCCTGG

✓ Mapping quality: higher = more unique ☺

Reference Mapping: Bowtie

1 job has been successfully added to the queue - resulting in the following datasets:

52: Bowtie2 on data 27 and data 26: unaligned reads (L)

53: Bowtie2 on data 27 and data 26: unaligned reads (R)

54: Bowtie2 on data 27 and data 26: aligned reads (sorted BAM)

55: Bowtie2 on data 27 and data 26: mapping stats

You can check the status of queued jobs and view the resulting data by refreshing the History pane. When the job has been run the status will change from 'running' to 'finished' if completed successfully or 'error' if problems were encountered.

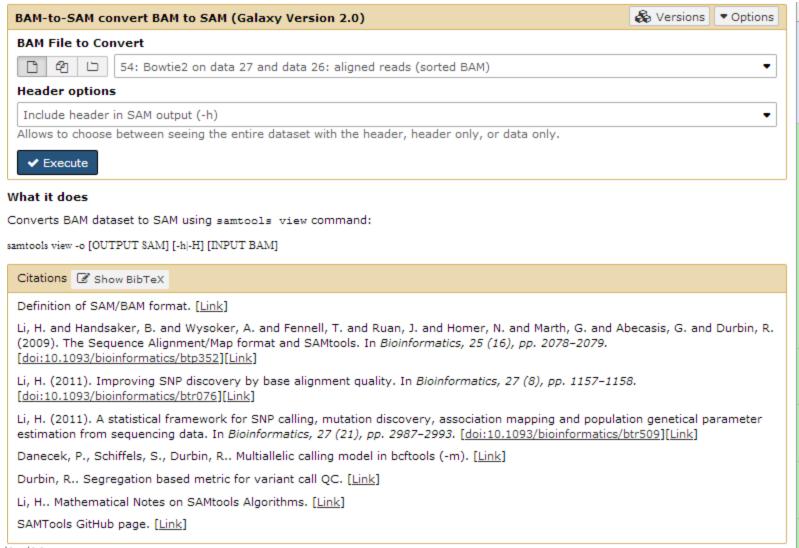
✓It will produce the multiple output files. BAM file consist of complete mapping information which stores the same data in a compressed, indexed, binary form.

√ The SAM Format is a text format for storing sequence
data in a series of tab delimited ASCII columns.

Mapping Statistics

- ✓ Uniquely mapped Reads mapped one time over the reference genome
- ✓ Multi mapped Reads mapped more than one time over the reference genome

Which Information is in SAM & BAM


✓ Both SAM & BAM files contain an optional header section followed by the alignment section.

√ The header section may contain information about the entire file.

√ The alignment section contains the information for each sequence about where/how it aligns to the reference genome.

Let us convert BAM to SAM

✓ Select BAM to SAM tool under samtools

SAM File: Mapping information

A History	MAPQ	POS	RNAME	FLAG	QNAME
search datasets			SO:coordinate	VN:1.0	DHD
Search datasets			LN:135534747	SN:chr10	psQ
Unnamed history			LN:135006516	SN:chr11	psQ
17 shown, 39 <u>deleted</u>			LN:40103	SN:chr11_gl000202_random	psQ
1.06 GB			LN:133851895	SN:chr12	psQ
			LN:115169878	SN:chr13	psQ
56: BAM-to-SAM			LN:107349540	SN:chr14	psQ
on data 54: conve			LN:102531392	SN:chr15	asQ
rted SAM			LN:90354753	SN:chr16	asQ
55: Bowtie2 on dat			LN:1680828	SN:chr17_ctg5_hap1	psQ
a 27 and data 26:			LN:81195210	SN:chr17	psQ
mapping stats			LN:37498	SN:chr17_gl000203_random	psQ
15 lines			LN:81310	SN:chr17_gl000204_random	psQ
format: txt, database:			LN:174588	SN:chr17_gl000205_random	psQ
D O O U			LN:41001	SN:chr17_gl000206_random	psQ
B 6 2 m ?			LN:78077248	SN:chr18	psQ
7106 reads; of these:			LN:4262	SN:chr18_gl000207_random)SQ
7106 (100.00%) were paired			LN:59128983	SN:chr19	psQ
2828 (39.80%) aligned conc			LN:92689	SN:chr19_gl000208_random)SQ
2360 (33.21%) aligned conc			LN:159169	SN:chr19_gl000209_random	sQ
1918 (26.99%) aligned conc			LN:249250621	SN:chr1)SQ
<			LN:106433	SN:chr1_gl000191_random	SQ
			LN:547496	SN:chr1_gl000192_random	isQ
54: Bowtie2 on dat			LN:63025520	SN:chr20	sQ
a 27 and data 26:			LN:48129895	SN:chr21	isQ
aligned reads (sorted B			LN:27682	SN:chr21_gl000210_random	isq
53: Bowtie2 on dat			LN:51304566	SN:chr22)SQ
a 27 and data 26:			LN:243199373	SN:chr2	psQ
unaligned reads (R)			LN:198022430	SN:chr3	sQ
52: Bowtie2 on dat ®			LN:590426	SN:chr4_ctg9_hap1)SQ
a 27 and data 26:			LN:191154276	SN:chr4	DSQ
unaligned reads (L)			LN:189789	SN:chr4_gl000193_random)SQ
24 5 100 11			LN:191469	SN:chr4_gl000194_random	psQ
31: FastQC on dat a 27: RawData			LN:180915260	SN:chr5	psQ
a z/: Kawbata			LN:4622290	SN:chr6_apd_hap1	DSQ
y 30: FastQC on dat ●				SN:chr6_cox_hap2	psQ
11	>				

Query ID

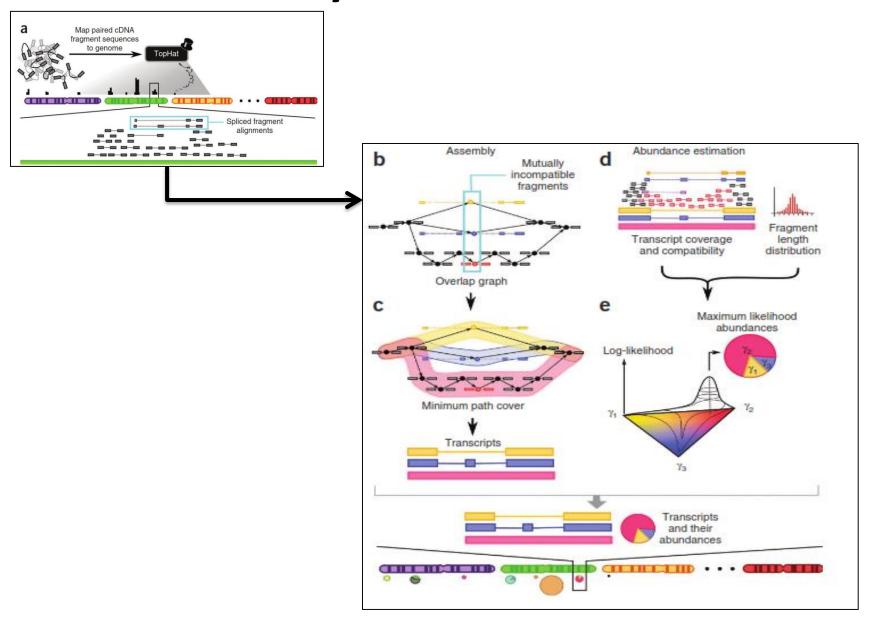
Header Chromosome number

@SQ SN:chrUn_g1000247 LN:36422 ,/							
@SQ SN:chrUn_g1000248 LN:39786				Docition	n on chi	romoco	mo
@SQ SN:chrUn_g1000249 LN:38502				PUSITIO	i on cm	10111030	me
@SQ SN:chrX LN:155270560							
@SQ SN:chrY LN:59373566		1/					
@PG ID:bowtie2 VN:2.3	.2 CL:"/	galaxy/main/deps/	conda/envs	/mulled-v1-cf2	72fa72b05720	12c68ee2cbf0	c8f909a02f29be46918c2a23
M00991:178:000000000-BBP68:1:1106:9736:6918	99 chr10		68M3D88M	=	430051 166		CCGTCCGCCACTATCAGCATTCGC.
M00991:178:000000000-BBP68:1:1106:9736:6918	147 chr10	430051 42	86M =	429971	-166 AAT	GCATATCCCTCG	ATTTCACACACGCCACTTTTGCTA
M00991:178:000000000-BBP68:1:2108:23825:17989	99 chr10	860519 42	153M =	860666	155 ATA	TTAAAGGTATTT	TGTACAGAAAACACAACACAGACA
M00991:178:000000000-BBP68:1:2108:23825:17989	147 chr16		8M =	860519		ACGAG	BAAAABBA AS:i:0
M00991:178:000000000-BBP68:1:2107:12293:26439	161 chr10			hr17 7119680			CAGCACGCGC AAAAAFF
M00991:178:0000000000-BBP68:1:1104:13558:18222	73 chr16		100M =				AATCAAGGCTTTGTAAAAGGGAGA
M00991:178:0000000000-BBP68:1:1104:13558:18222	133 chr16		* =				GCCAGCTCAGACACCCTGGGACAA
M00991:178:000000000-BBP68:1:1103:20292:14133	97 chr16			hr19 1077636	-		TATATTTGTAAATACACAGCTTAT
M00991:178:000000000-BBP68:1:1107:17049:25808	99 chr16		155M =		-		ACAAAACATTCAAACTACTTTTTT
M00991:178:000000000-BBP68:1:1107:17049:25808	147 chr16		155M =				TACTTTTTTTCCATCTCTTGCAGT
M00991:178:000000000-BBP68:1:1107:17049:25000	165 chr16		* =	5170810			GAGTTGCTAAGGATAGCAGACAAG
M00991:178:000000000-BBP68:1:1104:5844:11822	89 chr10		9M =			ATTCAG	@4FFBBBBB AS:i:0
M00991:178:000000000-BBP68:1:1104:3844:11822	165 chr16		* =				AGATGTCAATAACCAGTCCTTCAG
M00991:178:0000000000-BBP68:1:1105:15914:19028	89 chr16		16M =	5494394		CCGCCAAGAGAA	
M00991:178:000000000-BBP68:1:1103:15914:19028	165 chr16		10m =				AGATGTCAATAACCAGTCCTTCAG.
			_				
M00991:178:000000000-BBP68:1:1101:6644:20822	89 chr16		15M =				ACG?FFFFFFBBBBB AS:i:0
M00991:178:000000000-BBP68:1:2114:18702:22202	163 chr16		158M =	5,00202			CTGAGTAGTATTTCTATTCTTTCA
M00991:178:000000000-BBP68:1:2114:18702:22202	83 chr10		156M =	2,00200			TTCTTTCATTTTTGCAACATATAA.
M00991:178:000000000-BBP68:1:1111:5298:18126	99 chr10			55M =	11616696	197	CTTACTGTACTGCCAATTTTCCT
M00991:178:000000000-BBP68:1:1111:5298:18126	147 chr10			55M =	11616654	-197	CCCATGAATTATTTTGACATTTT
M00991:178:000000000-BBP68:1:1104:21028:25600	163 chr10		1 4		11954643	81	CCCA AAAA AS:i:0
M00991:178:000000000-BBP68:1:1104:21028:25600	83 chr10		_	0M =	11954572	-81	CGAAGCTGGG DB1FFAA
M00991:178:000000000-BBP68:1:2114:16947:22919	99 chr10			55M =	12070865	188	CCTGTGGTCCCTTTTCAGGTGTT
M00991:178:000000000-BBP68:1:2114:16947:22919	147 chr10			6M =	12070773	-188	CACTAGGAGGAAAACTCAAATTA.
M00991:178:000000000-BBP68:1:2109:26937:12502	97 chr10			55M chr16	4700341 0		TTATTCTGACCAGATCCGTGGATG.
M00991:178:000000000-BBP68:1:2107:14639:5173	99 chr10			55M =	13361183	172	CCCGGGTGTGGGATTCACATTTT
M00991:178:000000000-BBP68:1:2107:14639:5173	147 chr10			43M =	13361154	-172	CCACTTGTGGTGCGACCTCGATG.
M00991:178:000000000-BBP68:1:2105:16260:9454	101 chr10	15151770	0 *	=	15151770	0	GGCAGTTCCAGAAATCATTAAAT.
M00991:178:000000000-BBP68:1:2105:16260:9454	153 chr10	15151770	32 19	9M =	15151770	0	AAACTTGAGTTTTTCCAAG
M00991:178:000000000-BBP68:1:1103:14887:6379	99 chr10	15834731	42 10	06M =	15834858	186	GTTGCTTCCTGACATATAATTGT.
M00991:178:000000000-BBP68:1:1103:14887:6379	147 chr10	15834858	42 59	9M =	15834731	-186	TCTTTGGAGGTTATGGAATAAGC
M00991:178:000000000-BBP68:1:1109:7860:8475	163 chr10	17271678	42 71	M =	17271687	165	TCTCGCT B?ABABB AS:i:0
M00991:178:000000000-BBP68:1:1109:7860:8475	83 chr10	17271687	42 1	56M =	17271678	-165	CCGACGCCATCAACACCGAGTTC.
M00991:178:000000000-BBP68:1:1110:18848:15480	163 chr16	17271697	42 1:	16M2D40M	= 172	71740	199 CAACACCGAGTTCAA
M00991:178:000000000-BBP68:1:1110:18848:15480	83 chr16	17271740	42 7	3M2D81M	= 172	71697	-199 CTGCAGGAGCTGAAT
M00991:178:000000000-BBP68:1:1111:17753:19097	165 chr10	17275755	0 *	=	17275755	0	CCTTGAACGCAAAGTGGAATCTT
M00991:178:000000000-BBP68:1:1111:17753:19097	89 chr10	17275755	0 41	M3I7M15I126M	= 172	75755	Ø AGATTGCCTTTTTGA.
M00991:178:000000000-BBP68:1:2107:13404:9576	81 chr10			M15I136M		75764	141 TCTTGAAGAAACTCC
					-11		
<							>

- ✓ Millions of reads mapped to genome.
- ✓ Is it possible to analyse it manually?
- ✓ Answer is NO
- √ To estimate expression , we needed another tool.
- ✓ In 2010, Trapnell et al. published cufflinks and made the transcript abundance an easy task.

Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation

AB-ULg


Cole Trapnell^{1–3}, Brian A Williams⁴, Geo Pertea², Ali Mortazavi⁴, Gordon Kwan⁴, Marijke J van Baren⁵, Steven L Salzberg^{1,2}, Barbara J Wold⁴ & Lior Pachter^{3,6,7}

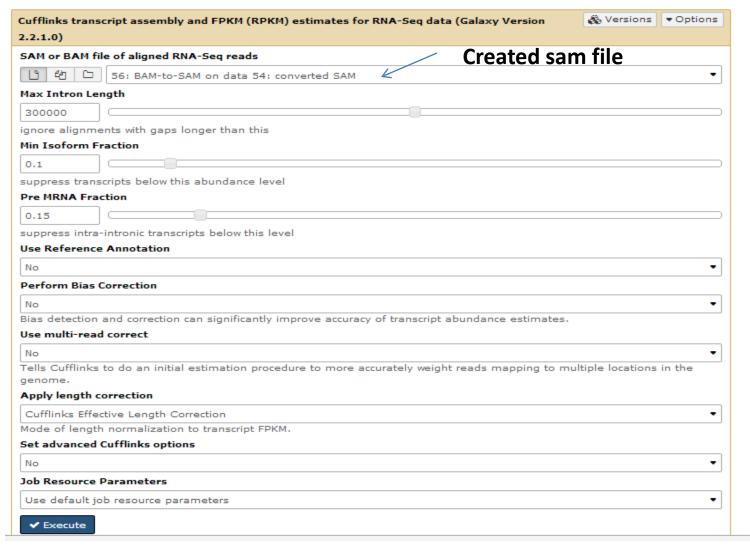
High-throughput mRNA sequencing (RNA-Seq) promises simultaneous transcript discovery and abundance estimation ¹⁻³. However, this would require algorithms that are not restricted by prior gene annotations and that account for alternative transcription and splicing. Here we introduce such algorithms in an open-source software program called Cufflinks. To test Cufflinks, we sequenced and analyzed >430 million paired 75-bp RNA-Seq reads from a mouse myoblast cell line over a differentiation time series. We detected 13,692 known transcripts and 3,724 previously unannotated ones, 62% of which are supported by independent expression data or by homologous genes in other species. Over the time series, 330 genes showed complete switches in the dominant transcription start site (TSS) or splice isoform, and we observed more subtle shifts in 1,304 other genes. These results suggest that

(75 bp in this work versus 25 bp in our previous work) and pairs of reads from both ends of each RNA fragment can reduce uncertainty in assigning reads to alternative splice variants ¹². To produce useful transcript-level abundance estimates from paired-end RNA-Seq data, we developed a new algorithm that can identify complete novel transcripts and probabilistically assign reads to isoforms.

For our initial demonstration of Cufflinks, we performed a time course of paired-end 75-bp RNA-Seq on a well-studied model of skeletal muscle development, the C2C12 mouse myoblast cell line¹³ (see Online Methods). Regulated RNA expression of key transcription factors drives myogenesis, and the execution of the differentiation process involves changes in expression of hundreds of genes^{14,15}. Previous studies have not measured global transcript isoform expression; however, there are well-documented expression changes at the whole-gene level for a set of marker genes in this system. We aimed to

Cufflink: Assembly and Abundance Estimation

Protocol for RNA Seq Data Analysis


1.Pre-processing

2.Quality Filtration

3. Mapping or assembly

4. Expression analysis

Let us run CUFFLINKS to estimate the expression of genes on genomes

You will get 5 output files.

1 job has been successfully added to the queue - resulting in the following datasets:

57: Cufflinks on data 56: gene expression

58: Cufflinks on data 56: transcript expression

59: Cufflinks on data 56: assembled transcripts

60: Cufflinks on data 56: total map mass

61: Cufflinks on data 56: Skipped Transcripts

You can check the status of queued jobs and view the resulting data by refreshing the History pane. When the job has been run the status will change from 'running' to 'finished' if completed successfully or 'error' if problems were encountered.

Different Method of Abundance Estimation

✓ Counts per million: Reads counts scaled by the number
of fragments you sequenced (N) times one million.

$$CPM_i = \frac{X_i}{\frac{N}{10^6}} = \frac{X_i}{N} \cdot 10^6$$

✓ Transcripts per million (TPM) is a measurement of the proportion of transcripts in your pool of RNA.

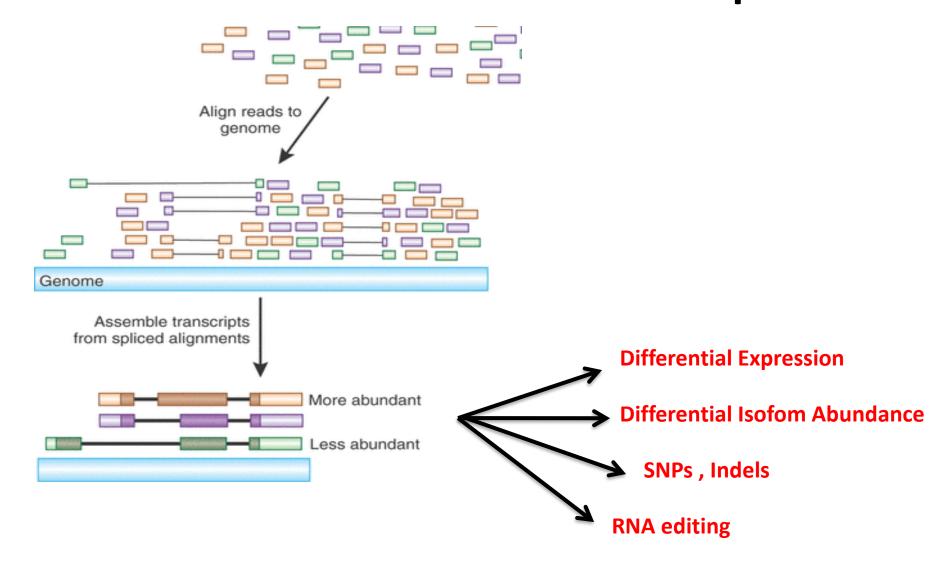
$$\mathrm{TPM}_i = \frac{X_i}{\widetilde{l}_i} \cdot \left(\frac{1}{\sum_j \frac{X_j}{\widetilde{l}_j}} \right) \cdot 10^6$$

✓ FPKM is a unit of expression. FPKM is simply a unit of expression

$$FPKM_i = \frac{X_i}{\left(\frac{\tilde{l}_i}{10^3}\right)\left(\frac{N}{10^6}\right)} = \frac{X_i}{\tilde{l}_i N} \cdot 10^9$$

✓ If you have FPKM, you can easily compute TPM:

$$TPM_i = \left(\frac{FPKM_i}{\sum_j FPKM_j}\right) \cdot 10^6$$

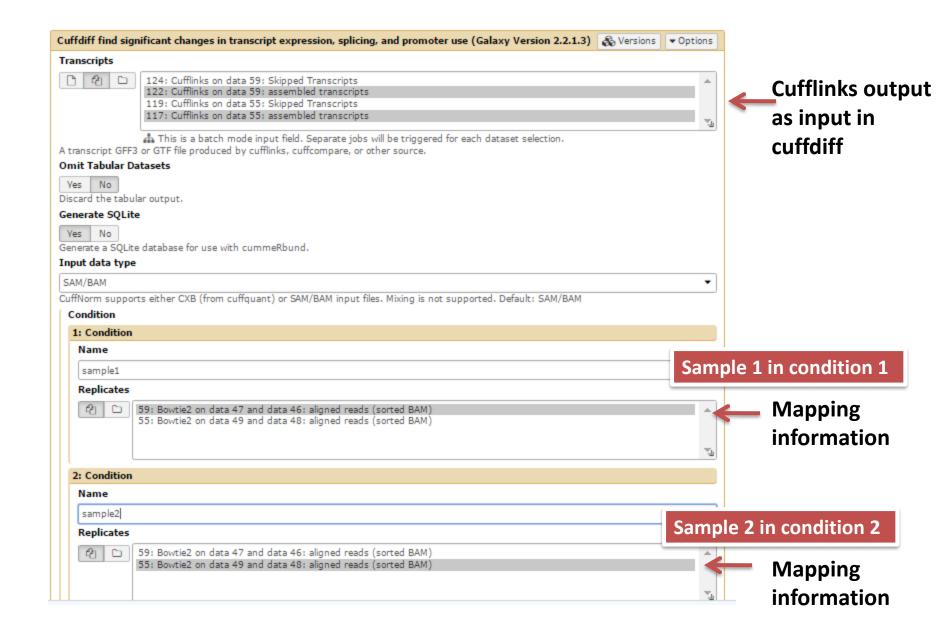

Transcript Expressions

1	2	3	4	5	6	7	8	9	10
tracking_id	class_code	nearest_ref_id	gene_id	gene_short_name	tss_id	locus	length	coverage	FPKM
CUFF.1.1	-	-	CUFF.1	-	-	chr11:1016561-1017335	774	9.82598	8303.04
CUFF.2.1	-	-	CUFF.2	-	-	chr11:1017439-1018092	653	6.64209	5489.47
CUFF.3.1	-	-	CUFF.3	-	-	chr11:62292242-62293305	1063	3.05145	2641.01
CUFF.4.1	-	-	CUFF.4	-	-	chr11:65272989-65273355	366	32.6074	27409.5
CUFF.5.1	-	-	CUFF.5	-	-	chr11:65266580-65270418	3838	15.0753	12927.1
CUFF.6.1	-	-	CUFF.6	-	-	chr11:65270666-65272939	2273	15.1561	13692.1
CUFF.7.1	-	-	CUFF.7	-	-	chr14:106207848-106208692	844	4.63947	4182.81
CUFF.8.1	-	-	CUFF.8	-	-	chr15:45007636-45007912	276	43.8713	35014.3
CUFF.9.1	-	-	CUFF.9	-	-	chr17:19091226-19091547	321	138.008	116298
CUFF.10.1	-	-	CUFF.10	-	-	chr1:28835082-28835270	188	127.939	105533
CUFF.11.1	-	-	CUFF.11	-	-	chr22:23243039-23243586	547	4.52043	5972.5
CUFF.12.1	-	-	CUFF.12	-	-	chr2:89156745-89157197	452	12.2365	11515.3
CUFF.13.1	-	-	CUFF.13	-	-	chr3:185135517-185136470	953	4.33674	3577.22
CUFF.14.1	-	-	CUFF.14	-	-	chr3:195507749-195508870	1121	2.01657	2699.64
CUFF.15.1	-	-	CUFF.15	-	-	chr3:195508955-195510544	1589	1.60876	2386.61
CUFF.16.1	-	-	CUFF.16	-	-	chr3:195510927-195512268	1341	3.58167	4358.11
CUFF.17.1	-	-	CUFF.17	-	-	chr3:195512377-195514082	1705	1.95635	2615.64
CUFF.18.1	-	-	CUFF.18	-	-	chr7:100550701-100551060	359	17.9467	16894
CUFF.19.1	-	-	CUFF.19	-	-	chr9:135894829-135895508	679	9.04212	7354.52
CUFF.20.1	-	-	CUFF.20	-	-	chrM:2037-2817	780	3.91122	3929.93
CUFF.22.1	-	-	CUFF.22	-	-	chrX:73047134-73047924	790	27.3414	22828.6
CUFF.21.1	-	-	CUFF.21	-	-	chrX:73062299-73062927	628	6.87826	5810.22
CUFF.23.1	-	-	CUFF.23	-	-	chrX:73069152-73069629	477	10.7957	9727.26
CUFF.24.1	-	-	CUFF.24	-	-	chrX:139865623-139866556	933	6.06793	5936.29
						Length o	f tro	nceri	

Chromosomal position on genome

Expression in term of FPKM

What if We have two different samples ??



Sample 2: Start Analysis

- ✓ Run Fastqc (Is there any issue in Quality plot ?)
- **✓** Run Trimmomatic to fix if you find any issue
- ✓ Run bowtie2 (Can you see mapping statistics? If yes, how many reads mapped)
- ✓ Run cufflink (what is minimum and maximum transcript expression?)

Differentially expression in two different conditions

- ✓ Cuffdiff is a highly accurate tool for performing sample comparisons, and can tell you which genes are up- or down-regulated between two or more conditions.
- √Go to NGS RNA Analysis in galaxy web server.
- ✓ Select cuffdiff tool.
- ✓ Select assembled transcript as input (output from cufflinks tool).

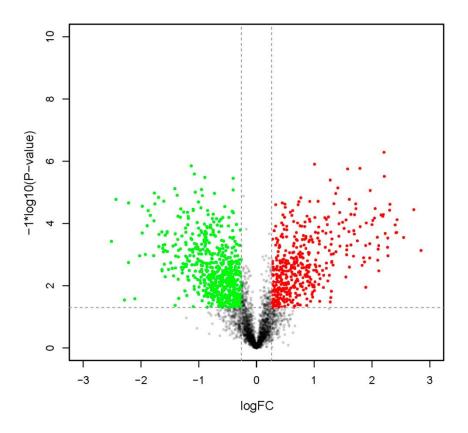
Cuffdiff Output : FPKM tracking files

isoforms.fpkm_tracking	Transcript FPKMs
genes.fpkm_tracking	Gene FPKMs. Tracks the summed FPKM of transcripts sharing each gene_id
cds.fpkm_tracking	Coding sequence FPKMs. Tracks the summed FPKM of transcripts sharing each p_id, independent of tss_id
tss_groups.fpkm_tracking	Primary transcript FPKMs. Tracks the summed FPKM of transcripts sharing each tss_id

Cuffdiff Output : differential files

isoform_exp.diff	Transcript-level differential expression.
gene_exp.diff	Gene-level differential expression. Tests differences in the summed FPKM of transcripts sharing each gene_id
tss_group_exp.diff	Primary transcript differential expression. Tests differences in the summed FPKM of transcripts sharing each tss_id
cds_exp.diff	Coding sequence differential expression. Tests differences in the summed FPKM of transcripts sharing each p_id independent of tss_id

Cuffdiff Output:

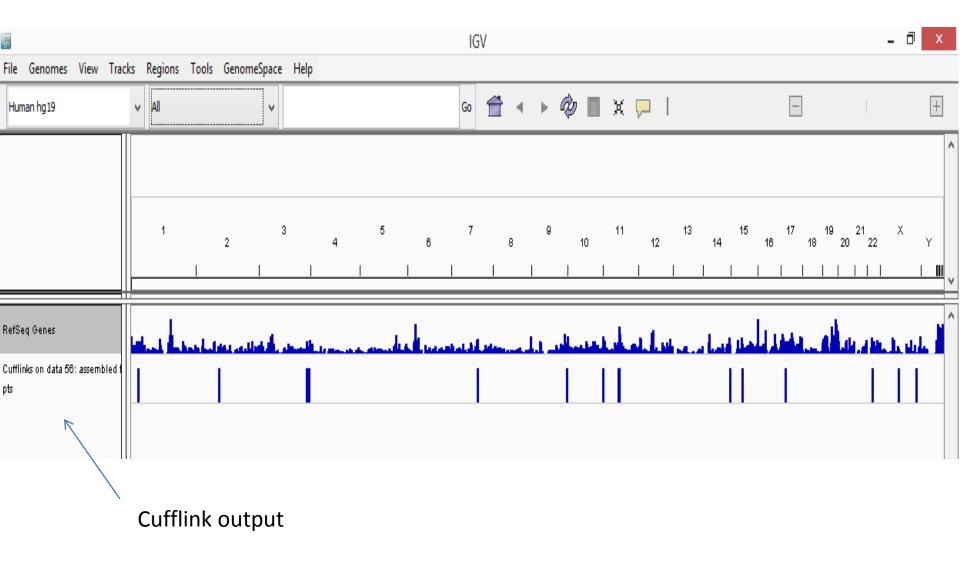

	2	2		E	6	7	8	9	10		10
1	2	3	4	5	_	-	_	_	10	11	12
test_id	gene_id	gene	locus	sample_1	sample_2	status	value_1	value_2	log2(fold_change)	test_stat	p_value
CUFF.1	CUFF.1	-	chr10:98510037-98510664	C1	C2	OK	9493.98	32599.5	1.77976	1.48669	0.17545
CUFF.10	CUFF.10	-	chr12:6619384-6619710	C1	C2	OK	25232.2	72273.2	1.5182	1.41818	0.1831
CUFF.11	CUFF.11	-	chr12:49521782-49522637	C1	C2	OK	3189.87	5058.44	0.665194	0.593004	0.57295
CUFF.12	CUFF.12	-	chr12:125396257-125398338	C1	C2	OK	10291.6	10108.2	-0.0259507	-0.0195277	0.9848
CUFF.13	CUFF.13	-	chr12:133402275-133402691	C1	C2	OK	14701.8	29691.4	1.01406	0.808465	0.40285
CUFF.14	CUFF.14	-	chr14:106090797-106091148	C1	C2	OK	22101.4	22363.8	0.0170267	0.0176527	0.93665
CUFF.15	CUFF.15	-	chr14:106173453-106173905	C1	C2	OK	13261	1561.22	-3.08644	-0.0862077	0.25195
CUFF.16	CUFF.16	-	chr14:106174096-106174509	C1	C2	OK	12801.5	22623.4	0.821506	0.65991	0.5265
CUFF.17	CUFF.17	-	chr14:106207785-106208145	C1	C2	OK	70913.6	62761.8	-0.176176	-0.147622	0.887
CUFF.18	CUFF.18	-	chr14:106109504-106110274	C1	C2	OK	9954.7	7797.09	-0.352442	-0.242097	0.8281
CUFF.19	CUFF.19	-	chr14:106208210-106208574	C1	C2	OK	31595.9	71169.3	1.17152	0.8854	0.4042
CUFF.2	CUFF.2	-	chr11:1016562-1018587	C1	C2	OK	5138.32	18878.9	1.8774	1.47427	0.1785
CUFF.20	CUFF.20	-	chr14:106209105-106209429	C1	C2	OK	49411.3	140200	1.50457	1.16794	0.2812
CUFF.21	CUFF.21	-	chr14:106110802-106111119	C1	C2	OK	23214.4	59909.3	1.36776	1.05483	0.32665
CUFF.22	CUFF.22	-	chr14:106235622-106235928	C1	C2	OK	28273.8	4183.93	-2.75654	-0.0769921	0.2652
CUFF.23	CUFF.23	-	chr15:45007610-45007908	C1	C2	OK	56496.2	187100	1.72758	1.33425	0.2249
CUFF.24	CUFF.24	-	chr15:82664618-82665097	C1	C2	OK	11063.8	26506.2	1.26048	1.15576	0.2548
CUFF.25	CUFF.25	-	chr15:83040991-83041657	C1	C2	OK	5466.52	16061.9	1.55495	1.41648	0.192
CUFF.26	CUFF.26	-	chr16:2812452-2814215	C1	C2	NOTEST	2353.05	1611.13	-0.546457	0	1
CUFF.27	CUFF.27	-	chr16:2815866-2817216	C1	C2	OK	2859.11	0	-inf	-nan	0.00075
CUFF.28	CUFF.28	-	chr16:21413502-21415549	C1	C2	OK	3972.75	388.56	-3.35393	-0.23512	0.2134
CUFF.29	CUFF.29	-	chr16:21415834-21416578	C1	C2	OK	11614.4	3411.63	-1.76737	-1.32884	0.1962
CUFF.3	CUFF.3	-	chr11:1265350-1265887	C1	C2	OK	7079.54	5677.35	-0.318437	-0.254093	0.8104
CUFF.30	CUFF.30	-	chr16:21845954-21848154	C1	C2	ОК	3665.06	896.135	-2.03205	-1.56799	0.14375
CUFF.31	CUFF.31	-	chr16:21848746-21849079	C1	C2	OK	18252.1	6470.03	-1.49622	-0.104869	0.44675
CUFF.32	CUFF.32	-	chr16:22544931-22547789	C1	C2	OK	11608.2	2150.91	-2.43213	-1.71478	0.13965
CUFF.33	CUFF.33	-	chr16:29494914-29497219	C1	C2	OK	2996.75	850.891	-1.81635	-1.37141	0.17895
CUFF.34	CUFF.34	-	chr16:30234372-30235341	C1	C2	OK	3511.86	0	-inf	-nan	0.00125
CUFF.35	CUFF.35	-	chr16:30235457-30237120	C1	C2	OK	2936.07	246,171	-3,57615	-0.0998629	0.27625
CUFF.36	CUFF.36		chr16:51680166-51680519	C1	C2	OK	17105.6	27534.1	0,686749	0.622949	0.5407
CUFF.37	CUFF.37	-	chr17:18965231-18965486	C1	C2	OK	127516	89551.2	-0.50989	-0.370282	0.71965
CUFE38	CUFF.38	-	chr17:18967179-18967437	C1	C2	OK	60815.1	38804.1	-0.648222	-0.536013	0.570€
CUFE39	CUFF.39	-	chr17:19015668-19015938	C1	C2	OK	94638.2	71390	-0.4067	-0.299543	0.7727
CUFE4	CUFE4		chr11:61732071-61732368	C1	C2	OK	28564.7	18460	-0.629832	-0.367058	0.65485
CUFF.40	CUFF.40	-	chr17:19091317-19091593	C1	C2	OK	2,28429e+06	1.58952e+06	-0,523156	-0,530726	0.5979
CUFE41	CUFE41	-	chr17:43591221-43592815	C1	C2	NOTEST	2349.71	775,744	-1,59883	0.5507.20	1
CUFE42	CUFF.42	-	chr17:43595213-43595732	C1	C2	OK	8195.18	1205.06	-2,76567	-0.0772472	0.2652
CUFF.43	CUFF.43		chr17:43595898-43596821	C1	C2	OK	2879.33	0	-inf	-nan	0.0057
CUFE44	CUFE44		chr17:78318471-78319080	C1	C2	OK	9415.36	922,399	-3,35155	-0.0936056	0.2514
CUFF.45	CUFF.45		chr1:28833875-28834105	C1	C2	OK	264558	270134	0.0300931	0.0260127	0.97805
CUEEAC	CUEEAC		-L-4.20035073-20034103	CI	62	OK	470070	270134	0.0300931	0.0260127	0.57603

Cuffdiff Output:

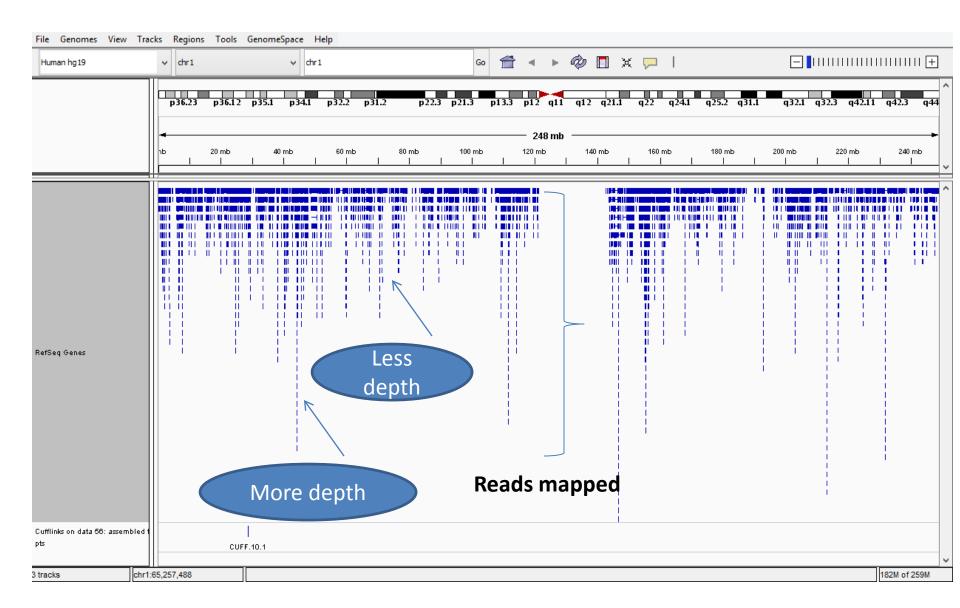
- ✓ Count genes showing log2 => 2, known as unregulated genes (increase in expression of a gene in Condition A as compared to B).
- ✓ Count genes showing log2 < 2 , known as down regulated genes (Decrease in expression of a gene in Condition A as compared to B).

69

By looking into figure, can you tell What are unregulated genes (colour)? What are down regulated (colour)?



Questions?


How does mapping look on reference genome

- ✓In previous practical session, you used the association viewer tool to get idea about how well a SNP associated with a locus.
- ✓ Let us visualise the mapping using IGB/IGV tool. Here you will see how well a particular locus expressing itself using RNASEQ DATA.
- ✓ Download IGV/IGV java application and display assembled transcripts data.

IGV: All chromosomal

IGV: Chromosome 1

Questions?